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Chapter 2

Ground Wave Propagation

Topics in this chapter include:

Introduction
Plane earth reflection
Space and surface waves
Transition between surface and space wave
Tilt of surface waves

Impact of imperfect earth
Reduction factor and numerical distance
Earth’s behaviour at different frequencies
Curved earth reflection

2–1 Introduction

The waves, which while traveling, glide over the earth’s surface are called ground waves. Ground waves
are always vertically polarized and induce charges in the earth. The number and polarity of these charges
keep on changing with the intensity and location of the wave field. This variation causes the constitution of a
current. In carrying this current, the earth behaves like a leaky capacitor. As the wave travels over the surface,
it gets weakened due to absorption of some of its energy. This absorption, in fact, is the power loss in the
earth’s resistance due to the flow of current. This energy loss is partly replenished by the diffraction of energy,
downward, from the portion of the wave present somewhat above the immediate surface of the earth. This
process is shown in Fig. 2–1.

The energy propagated over paths near the earth’s surface is considered to be made possible through ground
waves. The earth’s surface is normally considered to be a plane, provided the distance between the transmitter
and the receiver does not cross a barrier d which is given by

d = 50/(fMHz)1/3 in miles (1)

Figure 2–1 Front and side view of the gliding wave and a leaky capacitor.
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Beyond this distance, the effect of the curvature of the earth is to be accounted. Thus, the study of wave
propagation can be divided into two parts, i.e., the waves that propagate over (i) the plane earth, and (ii) the
spherical earth.

EXAMPLE 2–1.1 Calculate the distance beyond which the earth’s curvature is to be accounted at
frequency of (a) 100 kHz, (b) 1 MHz, and (c) 10 MHz.

Solution

In view of (1), d = 50/(fMHz)1/3 in miles

(a) 100 kHz = 0.1 MHz, d=50/(0.1)1/3=50/0.464=107.75 miles
(b) 1 MHz, d = 50/(1)1/3 = 50 miles
(c) 10 MHz, d = 50/(10)1/3 = 50/2.1544 =23–21miles

2–2 Plane Earth Reflection

For elevated transmitting and receiving antennas within the line of sight of each other, the received resultant
signal is a combination of the signal reaching the receiver through a direct path and that reaching after being
reflected by the ground. These two paths are shown in Fig. 2–2.

For a smooth plane and finitely conducting earth, the magnitude and phase of the reflected wave differ
from that of the incident wave. When the earth is rough, the reflected wave tends to be scattered and may be
much reduced in amplitude compared with smooth earth reflection. The roughness is generally estimated by
the Raleigh criterion given by the relation:

R = 4πσ sinθ/λ (1)

where,
σ is the standard deviation of the surface irregularities relative to the mean surface height,
θ is the angle of incidence measured from the normal angle, and
λ is the wavelength.
If R < 0.1, the reflecting surface is considered as being smooth.
If R > 10, the reflecting surface is considered to be rough.

From the rough earth, the reflected wave tends to be scattered and may be much reduced in amplitude
compared with that reflected from a smooth surface. Besides, a surface may be considered rough for waves
incident at high angles (i.e., large θ). It may approach to be smooth as the angle of incidence approaches the
grazing angle (i.e., θ →0). Also, when the incident wave is near grazing over a smooth earth, the reflection
coefficient approaches minus one for both polarizations.

Figure 2–2 Direct wave ( DW ) and reflected wave ( RW ) between Tx and Rx .
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The problem of reflection at the surface of a perfect dielectric results in the reflection factors for
perpendicular and parallel polarizations. The earth, although not a good conductor like copper or silver, is
also not a perfect dielectric. The relations for reflection factors for perpendicular and parallel polarizations
obtained for perfect dielectric (4 and 5 below), therefore, need modification by accounting finite conductivity
of the earth.

For a medium having dielectric constant ε and conductivity σ , Maxwell’s equations can be written as

∇ × H = J + ∂D/∂t = σE + ε∂E/∂t, (2)

In view of sinusoidal time variation [ejωt ], the above relation can be manipulated to yield

∇ × H = ε′ ∂E/∂t (3)

where, ε′ = {ε + (σ/jω)} is a complex quantity
The expression for reflection coefficients (Er /EI ) for horizontal polarization (RH ) and for vertical polarization
(RV ) are given as

RH = {√ε1 cos θ − √
(ε2 − ε1 sin2 θ)}/{√ε1 cos θ + √

(ε2 − ε1 sin2 θ)} (4)

RV = [(ε2/ε1) cos θ − √{(ε2/ε1) − sin2 θ}]/[(ε2/ε1) cos θ + √{(ε2/ε1) − sin2 θ}] (5)

If the medium 1 is free space with ε1 = ε0 and the medium 2 is the flat earth surface with ε2 = ε′ = {ε +
(σ / jω)}, the above expressions can be modified as under.

RH = {√ε0 cos θ−√[{ε+(σ/jω)} − ε0 sin2 θ ]}/{√ε0 cos θ+ √[{ε + (σ/jω)} − ε0 sin2 θ ]} (6)

For ψ = ψ2 = 90◦ − θ or θ = 90◦ − ψ, cos θ = sin ψ and sin θ = cos ψ

RH = {√ε0 cos(90◦ − ψ) − √[{ε + (σ/jω)} − ε0 sin2(90◦ − ψ)]}{√ε0 cos(90◦ − ψ)

+√[{ε + (σ/jω)} − ε0 sin2(90◦ − ψ)]}
= {√ε0 sin ψ − √[{ε + (σ/jω)} − (ε0 cos2 ψ)]}/{√ε0 sin ψ

+√[{ε + (σ/jω)} − (ε0 cos2 ψ)]}
= {sin ψ−√[{(ε/ε0)+(σ/jωε0)}−cos2 ψ]}/{sin ψ + √[{(ε/ε0)+(σ/jωε0)}−cos2 ψ]} (7)

Putting ε/ε0 = εr and σ /(jωε0) = x or Re|x| = σ /(ωε0) or x = (18×109)σ /fHz = (18 × 103)σ /fMHz
RH = {sin ψ − √[(εr − jx) − cos2 ψ]}/{sin ψ + √[(εr − jx) − cos2 ψ]} (8)

Similarly, the expression (5) of the reflection coefficient for parallel (vertical) polarization can be modified as
under.

RV = {(εr − jx) sin ψ − √[(εr − jx) − cos2 ψ]}/{(εr − jx) sin ψ + √[(εr − jx) − cos2 ψ]} (9)

Since RH and RV are both complex quantities, these can be written as

RH = |RH |\ RH , and RV = |RV |\ RV (10)

where |RH | and |RV | are the amplitudes and \ RH and \ RV are the phase angles of RH and RV respectively.

From (8), (9) and (10), it is evident that the reflection factors are of complex nature and that the reflected
wave will differ from the incident wave, both in magnitude and phase. The variation of these factors with
angles of incidence, values of x and frequencies (f ) is shown in Figs. 2–3 and 2–4. The parameter x

obtained for different relative dielectric constant (εr), conductivity (σ) of the earth over a range of fre-
quencies (from 0.5 to 1000 MHz) may vary from 2 to more than 200. The relative dielectric constant is
of the order of about 7 for a poor (low conductivity) earth, 15 for an average earth and about 30 for a
good (high conductivity) earth. These curves for different relative values of x and f yield the following
information:
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Figure 2–3 Variation of |Rh| and \ Rh with incident angle.

Figure 2–4 Variation of |RV | and \ RV with incident angle.

When the incident wave is horizontally polarized (Fig. 2–3)

• The phase of the reflected wave differs from that of the incident wave by nearly 180◦ for all angles
of incidences.

• For angles of incidence near grazing (ψ = 0), the reflected wave is equal in magnitude but 180◦ out
of phase with the incident wave for all frequencies and for all ground conductivities.

• As the angle of incidence is increased, both the magnitude and phase of the reflection factor
change, but not to a large extent. The change is greater for the higher frequencies and lower ground
conductivities.

When the incident wave is vertically polarized (Fig. 2–4)

• At grazing incidence E, the reflected wave is equal to that of the incident wave and has an 180◦ phase
reversal for all finite conductivities.

• As the angle increases from zero, the magnitude and phase of the reflected wave decrease rapidly.
The magnitude reaches a minimum and the phase change goes through −90◦ at an angle known
as pseudo-Brewster angle (or just Brewster angle) by the analogy of a perfect dielectric case. At
angles of incidence above this critical angle, the magnitude increases again and the phase approaches
zero.
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• For very high frequencies and low conductivities, the Brewster angle has very nearly the same value
as it has for a perfect dielectric. For εr= 15, the Brewster angle occurs at 14.5◦ for the perfect dielectric
case.

• For lower frequencies and higher conductivities, the Brewster angle is less, approaching zero as x

becomes much larger than εr .

• When the incident wave is normal to the reflecting surface (ψ = 90◦), it is evident that there is
no difference between horizontal and vertical polarization. The reflection coefficients RV and RH

should have the same value, as E will be parallel to the reflecting surface in both cases. Com-
parison of these figures illustrate that RV and RH have the same magnitude but differ by 180◦
in phase. This is due to the different positive directions assigned for the reflected waves in two
cases.

• For angles of incidence near grazing, a more accurate plot of reflection coefficient is often required.
Such curves plotted on logarithmic scales are available.

Figures showing variation of the earth’s constants (viz., conductivity and permittivity) in different regions
of the globe are also available. The values of εr and σ for some commonly encountered terrain are given in
Table 2–1.

The curves shown by Figs. 2–3 and 2–4 are labeled in terms of relative values of x and f . The actual
curves may be obtained by substituting desired values of σ , εr and f in the relevant equations. A curve
obtained for a particular x (say for good earth) will correspond to a particular frequency. This same curve
may also apply for another frequency if the conductivity of the earth is changed to that of a very poor
earth.

EXAMPLE 2–2.1 Obtain the roughness factor at 3 MHz for an earth having σ = 0.5, with θ = 30◦.
Calculate the ratio of roughness factors for the same earth and same θ if frequency is doubled.

Solution
In view of (1), R = 4 π σ sin θ / λ

Since λ at 3 MHz = 100 m

R = 4 π× 0.5 × sin 30◦/100 = π/100 = 0.031415927

EXAMPLE 2–2.2 Evaluate the roughness factors for the earth at 10 MHz if σ = 5 for θ equal to
(a) 30◦, (b) 45◦, and (c) 60◦.

Solution
In view of (4), R = 4 πσ sin θ/λ

Since λ at 10 MHz = 30 m

(a) R = 4 π× 5 × sin 30◦/30 = 10π/30 = π/3 = 1.0472

(b) R = 4 π× 5 × sin 45◦/30 = 20π/30
√

2 = √
2π/3 = 1.481

(c) R = 4 π× 5 × sin 60◦/30 = 10π
√

3/30 = √
3π/3 = 1.8138
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EXAMPLE 2–2.3 Estimate the values of parameter x for flat earth with σ = 4×10−5at
(a) f = 300 kHz, (b) 1000 kHz, and (c) 3 MHz.

Solution
In view of the relation, x = (18×103)σ /fMHz
(a) f = 300 kHz = 0.3 MHz, x = (18 × 103) × 4 × 10−5/0.3 = 72 × 10−2/0.3 = 2.4
(b) 1000 kHz = 1 MHz = x = (18 × 103)× 4×10−5/1 = 72×10−2= 0.72
(c) 3 MHz = x = (18×103)× 4×10−5/3 = 72×10−2 / 3 = 0.24

2–3 Space Wave and Surface Wave

Figure 2–5 Vertical dipole and its image.

According to Sommerfeld, the ground wave can be
divided into two parts, a space wave and a surface
wave. The space wave dominates at larger distances
above the earth, whereas the surface wave is stronger
nearer to the earth’s surface. The expressions given
by Norton for the electric field of an electric dipole
above the surface of a finitely conducting plane earth
clearly show the separation into space and surface
waves.

At larger distances, the field expressions for the
vertical dipole after neglecting the terms containing
the higher orders of 1/R1 and 1/R2, reduces to

EZ = j30βIdl[cos2 ψ({[exp −jβR1)]/R1} + RV {[exp(−jβR2)]/R2})
+(1 − RV )(1 − u2 + u4 cos2 ψ)F {[exp −jβR2)]/R2}] (1)

Eρ = −j30βIdl[sin ψ cos ψ({[exp −jβR1)]/R1} + RV {[exp(−jβR2)]/R2})
− cos ψ(1 − RV )u{√(1 − u2 cos2 ψ)}F {[exp(−jβR2)]/R2}(1 + 0.5 sin2 ψ)] (2)

The dimensional parameters ht , hr , R1, R2 and d are shown in Fig. 2–5.
EZ and Eρ are the z and ρ components of E respectively. R1,R2 and d are the respective distances from
dipole and its image to the point P . RV is the reflection coefficient discussed earlier, and F is the attenuation
function that depends upon the earth’s constants and the distance to the receiving point P .
u2= 1/ (εr−jx) (εr , x and parameters involved in it are defined earlier)
Equations (1 and 2) may be combined and separated into the following two parts.
The field strengths for space and surface waves can be given as

Etotal(space) = √[E2
Z(space) + E2

ρ(space)]
= j30βIdl cos ψ({[exp(−jβR1)]/R1} + RV {[exp(−jβR2)]/R2}) (3)

Etotal(surface) = √[E2
Z(surface) + E2

ρ(surface)]
= j30βIdl(1 − RV )F {[exp(−jβR2)]/R2}]√[1 − 2u2 + (cos2 ψ)u2(1 + 0.5 sin2 ψ)2] (4)

In the above relations, u4 and higher order terms are discarded.
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A surface wave (also called Norton surface wave) contains the additional function F representing the
attenuation.

The expressions (3) and (4) represent the electric field of a vertical dipole above a finitely conducting plane
earth. When the dipole is at the surface of the earth, the expression for the surface-wave part of this field
reduces to

Etotal(surface) = j30βIdl(1 − RV )F {[exp(−jβR)]/R}][az(1 − u2)

+ aρ cos ψ(1 + 0.5 sin2 ψ)}] u
√

(1 − u2 cos2 ψ)} (5)

In this expression R (R >> λ) is the distance from the dipole to the point at which the field is being considered,
az and aρ are the unit vectors respectively parallel to and perpendicular to the vertical dipole associated with
Ez and Eρ . Also,

F = {1 − j
√

(πω)e−ω[erf c(j
√

ω)]} (6)

ω = {−jβRu2(1 − u2 cos2 ψ)/2}[1 + sin ψ/{u√
(1 − u2 cos2 ψ)}]2 (7)

erf c(j
√

ω) = (2/
√

ω)

∫ ∞

i
√

ω

e−v2
dv (8)

Figure 2–6 Transition between
surface and space waves.

When ht is quite large, the wave is a plane wave
and the space wave field is the total ground wave
field. When ht is quite small, the incident wave will
not be a plane wave. The expression for the total
reflected field must contain terms in addition to
those given by the space wave field. These addi-
tional terms are those which account for the surface
wave.

2–4 Transition Between Surface
and Space Wave

In case of vertical polarization if the antenna height
is less than the barrier A-A (Fig. 2–6), the surface
wave dominates, E is not a function of ht and hr and the ray action is not present. Above this barrier, the
space wave dominates, ray action (DR and RR) comes into picture, E is a function of frequency, conductivity
and polarization and if σ is finite, ht is less over the earth surface and large over the sea surface. In case of
a horizontally polarized wave, ht = λ/10 for much smaller σ , even less than for good earth and sea water.
Ground wave is almost negligible especially for f > 30 MHz.

2–5 Tilt of Wave Front due to Ground Losses

In Section 2–1, it was mentioned that the waves glide over the surface of the earth. Initially, E (and
hence the displacement current) originating from a vertical antenna can be considered to be entirely
perpendicular to the earth. During the passage of travel, it gets weakened due to energy absorp-
tion by the earth. The farther it travels, the more energy is absorbed and weaker it becomes. The
energy absorbed is the result of a current flow beneath the earth’s surface up to a certain depth and
the presence of earth resistance. As shown in Fig. 2–7, the wave front starts tilting in the for-
ward direction as it progresses.The magnitude of tilt will depend upon the conductivity and permittivity
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of the earth. The forward tilt of E results in a horizontal component of the current, and hence of
the power ‘P ’ sufficient to furnish the power dissipated in earth over which the wave is passing.

Figure 2–7 Elliptic
polarization and tilt of E at the

earth surface for εr = 5 and
for different values of x.

In general, the components of E parallel and perpendicular to earth
will neither be in phase nor will have equal magnitude and thus E

above the earth will be elliptically polarized.
The illustration of Fig. 2–8 gives an idea about tilting of the

wave during its travel. It shows the distribution and the alter-
nation of the field (E) and charge (Q) just above the ground
with the wave travel. It also shows the current flow inside the
earth. The lengths and tips of arrows represent the magnitudes
and direction of currents at different instants of time. The deeper
the current penetrates, smaller is its magnitude. As long as the
surface supporting the wave is a perfect conductor, E and Q dis-
tribution shall remain confined to the surface and E will be entirely
vertical.

The moment conductivity becomes finite, a horizontal component
of the field E comes into existence resulting in current flow inside the media. The more is the deviation, more
will be the depth of penetration. Thus this distribution is true for any media having finite conductivity.
The surface wave impedance ZS of earth is given by

ZS = √[ωμ/
√

(σ 2 + ω2εR)] \ [(1/2) tan−1(σ/ωεR)] (1)

Also, the horizontal and vertical components of E are

Eh = J sZs and Ev = ηvH (2)

Thus,

Eh/Ev = Zs/ηv = Zs/377 (3)

Figure 2–8 Electric field, charge and current distribution.
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EXAMPLE 2–5.1 Evaluate the value of surface impedance if σ = 5×10−5, εr = 15, μ = μ0 at
(a) 5 kHz, (b) 50 kHz, and (c) 500 kHz.

Solution
In view of (1), |ZS | = √

[ωμ /
√

(σ 2 + ω2εR)]

σ 2 = 25 × 10−10

(a) f = 5 kHz, ω = 2πf = 2π × 5 × 103 = π × 104, ω2 = 109, ω2εR = 15 × 109

ωμ = π × 104 × 4π × 10−7 = 4 × 10−2,

ωεR = π × 104 × 15

σ 2 + ω2εR = 25 × 10−10 + 15 × 109 ∼= 15 × 109

√
(σ 2 + ω2εR) = √

(15 × 109) = 3.873 × 103[
ωμ/

√
(σ 2 + ω2εR)

] = [0.04/3.873 × 103] = 10.3 × 10−6

|ZS | = √[ωμ/
√

(σ 2 + ω2εR)] = √
10.3 × 10−6

= 3.21 × 10−3

(b) f = 50 kHz , ω = 2πf = 2π× 50×103 = π×105, ω2 = 1011, ω2εR = 15 ×1011

ωμ = π × 105 × 4π × 10−7 = 0.4, ωεR = π × 105 × 15

σ 2 + ω2εR = 25 × 10−10 + 15 × 1011 ∼= 15 × 1011

√
(σ 2 + ω2εR) = √

(150 × 1010) = 12.247 × 105[
ωμ/

√
(σ 2 + ω2εR)

] = 0.4/12.247 × 106 = 0.03266 × 10−6

|ZS | = √[ωμ/
√

(σ 2 + ω2εR)] = √
(3.266 × 10−8)

= 1.807 × 10−4

(c) f = 500 kHz, ω = 2πf = 2π× 500×103 = π×106, ω2 = 1013, ω2εR = 15 ×1013

ωμ = π × 106 × 4π × 10−7 = 4, ωεR = π × 106 × 15

σ 2 + ω2εR = 25 × 10−10 + 15 × 1013 ∼= 15 × 1013

√
(σ 2 + ω2εR) = √

(15 × 1013) = 12.247 × 106[
ωμ/

√
(σ 2 + ω2εR)

] = 4/12.247 × 106 = 0.3266 × 10−6

|ZS | = √[ωμ/
√

(σ 2 + ω2εR)] = √
(0.3266 × 10−6)

= 5.715 × 10−4

The depth of penetration of the current into the ground is the function of the ground constants and the
frequency. Penetration of the order of 15 m occurs at broadcast frequencies, decreasing to one or two meters
at the frequencies of short-wave communication. At low frequencies, the surface wave is dependent mainly
on the conductivity, whereas at higher frequencies a high permittivity is important. Thus, over all frequencies,
surface wave is best over sea and worst over dry land.
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2–6 Impact of Imperfect Earth

Figure 2–9 illustrates vertical radiation patterns (VRPs) of a vertical dipole (VDP), and Fig. 2–10 illustrates
vertical radiation patterns of a horizontal dipole (HDP) located at different heights above the earth’s surface.
Similar illustrations were included earlier in Chapter 15 in Figs. 15–5, 16–6 and 15–7. The parameter n shown
in the figures is computed by the relation ‘n = x / εr ’ for εr of an average earth. From these figures, it can
be noted that due to finite conductivity, the chief effect occurs at low angles where the space wave is much
reduced from its value over that of a perfectly conducting earth. This is because the phase of Rv changes
rapidly for angles of incidences near the Brewster’s angle. At Brewster’s angle, the phase is nearly zero,
whereas below this angle it is −180◦.

2–7 Reduction Factor and Numerical Distance

According to the Sommerfield analysis, the ground wave strength E (for flat earth case) is given by the
relation:

E = AE0/d (1)

Figure 2–9 Vertical radiation pattern of vertical dipole at h = 0 and h = λ/2.

Figure 2–10 Vertical radiation pattern of horizontal dipole at h = λ/4 and h = λ/2.
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where E0 is the field strength of the wave at the surface of the earth at a unit distance from the transmitter
after neglecting the losses in this unit distance. It is a function of the transmitted power Pt and the directivity
of the antenna in the horizontal and vertical planes. Thus, if Pt is 1 kW, E0 is obtained to be 300 mW at 1 km
distance.

The symbol d stands for the distance from the transmitting antenna to the point at which E is to be estimated,
and A is a factor called reduction factor which accounts for ground losses and is a function of the conductivity
σ , permittivity ε, frequency f and distance d in terms of the wavelength λ. The factor A can be expressed in
terms of two auxiliary parameters p and b, where the parameter p is called the numerical distance and b, the
phase constant. Parameter b is a measure of the power factor angle of the earth. Both p and b are functions
of σ , f and characteristics of the earth taken as a conductor of radio frequency current or the power factor of
the earth impedance.

For p < 1, A slightly differs from unity, i.e., the loss in earth has little effect on ground wave field strength
and E is inversely proportional to the distance.

For p > 1, A decreases rapidly.
For p > 10, A varies as inversely proportional to the square of distance.
The values of p and b for vertically and horizontally polarized waves can be obtained from the following

relations:

(A) For Vertically Polarized Waves (VPW)

p = π

x

d

λ
cos b and tan b = ε + 1

x
(2)

Since ground waves are generally vertically polarized, the following approximation can be made in order to
arrive at some simplified and meaningful results.
(i) For conducting earth

ε + 1

x
< 0.3, p = 1.75

d

c

f 2

σ
× 10−12 (3)

(ii) For dielectric earth

ε + 1

x
> 0.3, p = π

d

c

f

ε + 1
(4)

(B) For Horizontally Polarized Waves (HPW)

p ∼= π
d

λ

x

cos b′ and tan b′ = ε − 1

x
(5)

In the above equations,
b = 180◦ − b′, x = 1.80 × 1212σ/f, d/λ is the distance in wavelength, σ is the ground conductivity,

f is the frequency and ε is the dielectric constant of the ground referred to air as unity, and c is the velocity
of light.

In view of the above, A may be approximately expressed in terms of p and b by an empirical relation for
b ≤ 90◦.

A = 2 + 0.3p

2 + p + 0.6p2
−

√
(p/2)e−5p/8 sin b (6)

When b = 0 for a vertically polarized wave and 180◦ for a horizontally polarized wave, a resistive impedance
is offered by the earth to the flow of RF current.
For x >> εr , at broadcast frequencies, b ≈ 0
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For x << εr , at HF and above, b ≈ 180◦
For b = 90◦ earth often offers a capacitive impedance for either polarization

EXAMPLE 2–7.1 A ground wave of 0.5 mV/m at 20 km distance is obtained from a transmitter
operating at 2 MHz. The vertically polarized field produced is proportional to cos θ , where θ is the angle
of elevation. The other related parameters are
Antenna efficiency = 50%, σ = 5×10−5 and εr = 15. Estimate E at the transmitting end.

Solution

x = (18 × 103)σ/fMHz = (18 × 103)5 × 10−5/2 = 0.45, λ at 2 MHz = 150 m,

d = 2 × 104 m, E = E1 at d = 0.5 × 10−3V/m

For a vertically polarized wave,

tan b = ε + 1

x
= (15 + 1)/0.45 = 16/0.45 = 35.55, b = tan−1(35.55) = 88.38

cos b = cos (88.38) = 0.028

p = π

x

d

λ
cos b = π

0.45

2 × 104

150
× 0.028 = 6.2832 × 103 × 0.028

6.75
= 26

A = 2 + 0.3p

2 + p + 0.6p2
= 2 + 0.3 × 26

2 + 26 + 0.6 × 26 × 26
= 9.8

433.8
= 0.0226

E at the transmitting end = E1 × d / A = (0.5 × 10−3) 2×104/ 0.0226 = 442.48 V/m
P = (442.48/137.6)2 = 10.34 kW

2–8 Earth’s Behavior at Different Frequencies

In view of Fig. 2–11, the following conclusions can be drawn.

Figure 2–11 Variation of attenuation
factor A with numerical distance ρ.

(i) At Broadcast and Lower Frequencies

• Ratio of capacitive reactance of the earth to
the earth resistivity (ρ = 1/σ) is >> 1. Thus,
the earth may be regarded as pure resistance.

• Values of A and p for a given physical dis-
tance is determined by A which is a function
of the term (f 2/σ).

(ii) At HF (10 MHz) and Above

(i) The impedance represented by the earth
is primarily capacitive and A is a function
of the term [f / (ε + 1)].

• The values of σ and ε that govern A of the
ground wave are suitably averaged values
of the quantities for a distance below the
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earth’s surface. This distance referred is the depth to which there are ground currents of appreciable
amplitudes and is called the depth of penetration.

• The depth of penetration depends on f , σ , ε and ranges from a few feet at HF to 100’s of feet at
broadcast and lower frequencies.

• The earth’s constants are not particularly sensitive to conditions existing at the actual surface of the
ground, i.e., rain, etc.

2–9 Electrical Properties of the Earth

Table 2–1 Typical ground constants

Type of terrain εr σ (mhos/cm)
Sea water 81 45000
Fresh water 80 100
Pastoral, low hills, Rich soil, 20 100
Pastoral, medium hills, Forestation 13 50
Rocky soil, flat sandy 10 20
Cities, industrial areas 5 10

The conductivity σ and permittivity ε of earth
widely vary for different types of soil. Values of a
few typical soils and water are given in Table 2–1.
It needs to be mentioned that hilly or mountainous
regions normally have low conductivity (10−3 to
5×10−3 mhos/m), whereas flat regions have rel-
atively high conductivity (10×10−3 to 30×10−3

mhos/m). Also, the conductivity varies with tem-
perature and salt content.
2–10 Curved Earth Reflection

It was stated earlier that the effect of the curvature of the earth is entirely negligible up to a certain dis-
tance and all the relations obtained are valid up to this distance given by [d = 50/ (fMHz)1/3]. When this
distance gets doubled, the errors introduced in the estimation of various parameters remain small. For still
greater distances, reduction in field strength below the free space value is much more. This enhanced reduc-
tion is mainly due to the curvature of the earth rather than due to losses in the ground. This is mainly
because of the bulge of the earth which prevents surface waves from reaching the receiver by a straight-
line path. The surface waves arrive at the receiver either through (a) diffraction around the earth, or (b)
refraction in the lower atmosphere above the earth. The space-wave propagation too is affected by the
earth’s curvature. In this case, the wave from the ground is reflected from the curved surface instead of
a flat surface. As a result, this wave will have a more diverged nature and hence will be weaker while
reaching the receiver. As illustrated in Fig. 2–12, the effective antenna heights h′

1 and h′
2 are less than

the actual antenna heights h1 and h2, and thus all equations obtained for flat earth are to be suitably
modified.

At first glance, it appears that the problem of curved earth is easy and can be tackled by the application
of Maxwell’s equations in a simple manner as it was done in the case of flat earth. In Fig. 2–2, ‘d’ is the
distance between the transmitting and receiving antennas. In view of the curvature of the earth (Fig. 2–12),
this distance elongates and exceeds d of Fig. 2–2. The curvature also results in an increase of the reflection
angle which is now greater than ψ2 of Fig. 2–2. Since θ = 90◦ − ψ or 90◦ − ψ2, it will be different from
that of flat earth. On the substitution of these new parameters in (7) and (8) of Sec. 2–2, altogether different
values may result. Also, since Rh and Rv are complex quantities, |Rh|, |Rv|, \ Rh and \ Rv and the curves
obtained therefrom will obviously differ. The estimation of field components Ez and Eρ, etc., shall also be
influenced by the change in Rh and Rv . Apparently, the problem appears to be simple and straight forward.
Jordon14, however, has opined as under:

“The available solutions to this problem are much more involved than the plane earth solutions. One such
solution is in the form of an infinite series of spherical harmonics with coefficients containing twelve Bessel
functions. The convergence of the series is extremely slow, the main contribution being given by those terms
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Figure 2–12 Effective and actual antenna heights.

for which n is of the order of the ratio 2πa/λ , where a/λ is the radius of the earth in wavelengths. For
commonly used radio frequencies, this ratio is of the order of 103 to 108.”

To understand the further complexity of the problem, one may still refer to the paper of J. R. Wait30 and
the references cited therein, particularly from 42 to 61.

The problem of spherical earth basically revolves around the question whether transmitting and receiving
antennas are within line-of-sight range or not. To address the problem, consider Fig. 2–13a which shows an
elevated antenna A and a point C on the ground. The problem reduces to finding the distance to visible (optical)
horizon. If the radius of the earth is a, antenna height is h1 and the angle is α then from the right-angled
triangle OAC,

cos α = a

a + h1

∼= 1 − h1

a
(1)

α in all practical problems is small. Thus for small α,

cos α ∼= 1 − α2

2
(2)

From (1) and (2),

α = d1/a = √
2h1/a (3)

Thus, the horizontal distance is

d1 = √
2ah1 m (4)

Similarly, from Fig. 2–13b,

d2 = √
2ah2 m (5)

If Figs. 2–13a and 2–13b are joined together by overlapping OC, it results in Fig. 2–13c and the total
horizontal distance d can be given by

d0 = d1 + d2 = √
2a

(√
h1 + √

h2

)
(6)

d0 =
√

2 × 6.37 × 106
(√

h1(m) + √
h2(m)

)
= 3.57

(√
h1(m) + √

h2(m)
)

km (7)
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Figure 2–13 Effective and actual antenna heights.

The distance d0 can be termed as line-of-sight (LOS) distance/range. Let us confine our study to the case when
the antennas are A and B and the distance d < d0. As in case of flat earth, the total field at Rx should be the
sum of DR (AB) and RR (ACB). The curvature of the earth has the following effect on the wave propagation
within the LOS range:

1. For fixed antenna heights, the path length difference between DR and RR will be different from that
of flat earth case.

2. The reflection at the convex surface will result in divergence of the RR path and hence will reduce
the power received via RR.

To understand the process, consider Fig. 2–12. It illustrates a tangent plane MN touching the earth at the
point of reflection. The antenna heights can now be measured from this plane instead of the earth’s surface.
The heights h′

1 and h′
2 so obtained are the reduced heights and can be used for the actual heights h1 and h2

wherever they appear in equations. It needs to be mentioned that Fig. 2–12 does not represent parameters in
true proportion as heights of antennas are much smaller than the radius of the earth. Practically, there is little
difference between h1 and h′

1 and h2 and h′
2 and the deviations can be written as

h′
1 = h1 − �h1 and h′

2 = h2 − �h2 (8)

In Fig. 2–12, �h1 and �h2 are shown as A′′A′ and B ′′B ′. Since d1 and d2 represent the LOS ranges at
heights h1 and h2 respectively from (4) and (5)

�h1 = d2
1/2a and �h2 = d2

2/2a (9)

From (8) and (9)

h′
1 = h1 − d2

1/2a and h′
2 = h2 − d2

2/2a (10)

From triangles OAC and OBC shown in Fig. 2–12 with angles of incident and reflection being the same,

(a + h1) cos(α + ψ2) = a cos ψ2 and (a + h2) cos(β + ψ2) = a cos ψ2 (11)

Equation (11) is justified since h1and h2 << a, and ψ (ψ = ψ2)is the grazing angle ACM and BCN. From
the figure,

tan ψ = cos α − a
a+h1

sin α
= cos β − a

a+h2

sin β
(12)

In the derivation of (12), no assumptions were made. Therefore, the resulting expression is so rigorous that it
cannot be solved analytically and requires graphical or some other approach for getting the solution. It may,
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however, be simplified since h1and h2 << a and α and β are also small. Thus, we may set

a

a + h1

∼= 1 − h1

a
and

a

a + h2

∼= 1 − h2

a
(13)

cos α ∼= 1 − α2

2
and cos β ∼= 1 − β2

2
(14)

Thus, tan ψ = h1/a − α2/2

α
= h2/a − β2/2

β
(15)

The above equation can also be expressed in terms of distances d1 and d2, (d = d1 + d2) to get

tan ψ = h1/a − d2
1/2

d1
= h2/a − d2

2/2

d2
(16)

Since in almost all practical cases h1 > h2d1, (16) leads to

d1 = d2

2
+ 2

√
d2

12
+ a

3
(h1 + h2) × cos

⎡
⎢⎣60◦ + 1

3
cos−1 ad(h1 − h2)

4
{

d2

12 + a
3 (h1 − h2)

}3/2

⎤
⎥⎦ (17)

When d < d0, the reflection point is located by the equations for flat earth which have the form

d1 = h1

h1 + h2
d and d2 = h2

h1 + h2
d (18)

The expression for path difference (for flat earth case) given by (5) of Sec. 24–2 can be written in the modified
form as below.

�d = d2 − d1 ∼= 2h1h2/d (19)

This equation can be modified for spherical earth by replacing actual antenna heights h1 and h2 by the reduced
heights h′

1 and h′
2. This results in

�d ∼= 2h1′h2′/d (20)

Similarly, in case of flat earth

tan ψ = h1 + h2

d
and for small angle ψ ∼= h1 + h2

d
(21)

This equation too gets modified in case of spherical earth and can be written as

ψ ∼= h′
1 + h′

2

d
(22)

Problems

2–1–1 Distance beyond the earth’s curvature. Calculate the distance beyond which the earth’s
curvature is to be accounted at a frequency of (a) 30 kHz, (b) 3 MHz, and (c) 30 MHz.

2–2–1 Roughness factor. Obtain the roughness factor at 10 MHz for an earth having σ = 5×10−5 mhos/cm
for θ equal to (a) 5◦, (b) 10◦, and (c) 30◦.

2–2–2 Roughness factor. Evaluate the roughness factors for the earth if σ = 5 × 10−5θ = 15◦ and f equal
to (a) 10 kHz, (b) 100 kHz, and (c) 1 MHz.
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2–2–3 Parameter x. Estimate the values of the parameter x for flat earth with σ = 3×10−5at (a) f = 100 kHz,
(b) 500 kHz, and (c) 3 MHz.

2–5–1 Surface impedance. Evaluate the value of surface impedance if σ = 3×10−5, εr = 10, μ = μ0 at
(a) 5 kHz (b) 10 kHz, and (c) 20 kHz. Calculate the rate of change of Zs with doubling of frequency.

2–7–1 Transmitted power. A ground wave of 0.5 mV/m at 20 km distance is obtained from a transmitter
operating at 2 MHz. The horizontally polarized field produced is proportional to cos θ where θ is the angle
of elevation. The other related parameters are
antenna efficiency = 30%, σ = 5×10−5 and εr = 12. Estimate the transmitted power.
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